RADIO KOSMOS CHILE

3/17/2014



Ficha 11: Anisotropía
La característica de depender de la dirección.
 
La luz que llega con igual intensidad desde todas las direcciones (la luz del Sol, la de una bombilla en una habitación) es isotrópica.
El haz de un foco que sigue a la bailarina en el escenario, es anisotrópico. La radiación cósmica de fondo es generalmente isotrópica, o lo que es lo mismo, su intensidad es la misma en todas las partes del cielo, pero se han detectado pequeñas anisotropías que, se piensa, reflejan el movimiento propio de la Tierra relativo al marco del universo como un todo.


Ficha 12: Año-Luz
Unidad de distancia utilizada en astronomía; la distancia recorrida por la luz en el vacío durante un año. Es igual a 9'4659x1015 metros o 5'8787x1012 millas. El resultado es el de 299.792'458 Km/segundo y averiguar los segundos que tiene un año para multiplicarlo por esta última cantidad, así sabremos la distancia que recorre la luz en un año.



Ficha 13: Antiátomo
Átomo en el que todas las partículas de los átomos ordinarios son reemplazadas por sus antipartículas, es decir, electrones por positrones, protones por antiprotones y neutrones por antineutrones. Un antiátomo no puede coexistir con un átomo ordinario, ya que, el átomo y el antiátomo al contacto, se aniquilarían mutuamente con la producción de energía en forma de fotones de alta energía.

 

Ficha 14: Antimateria
Materia formada por partículas con igual masa y espín que las de materia ordinaria, pero con carga opuesta. Se ha producido experimentalmente antimateria, pero es difícil encontrarla en la naturaleza. Por qué esto es así es una pregunta que debe responder el estudio del universo primitivo, en el que, según parece, había más electrones que positrones, protones que antiprotones y neutrones que antineutrones, de tal manera que, una vez destruida toda la materia y antimateria igual en número, el sobrante es la materia que forma el universo (dejando aparte la materia oscura que no sabemos -aún- lo que es).
 

 

Ficha 15: Principio Antrópico
Doctrina según la cual el valor de ciertas constantes fundamentales de la naturaleza puede explicarse demostrando que, si fuese diferente, el universo no podría contener vida. Si la intensidad de la fuerza nuclear fuerte fuera un poco diferente, por ejemplo, las estrellas no podrían brillar y la vida tal como la conocemos sería imposible.
La palabra antrópico, viene de la palabra griega anthropos, que significa ser humano. Y el principio antrópico viene a responder a la pregunta sobre la relación que hay entre la enormidad del universo y nuestra existencia. Y lo que afirma es que, por los datos y cálculos de la física, la conclusión más lógica es que “hay universo para que se dé la existencia humana”. Cualquier cambio en los parámetros de la materia o de las condiciones iniciales y desarrollo de la evolución hubiese tenido como consecuencia que no hubiera habido vida humana.

 

Ficha 16: Asimetría
Una violación de la simetría. Las medidas de asimetría son indicadores que permiten establecer el grado de simetría (o asimetría) que presenta una distribución de probabilidad de una variable aleatoria sin tener que hacer su representación gráfica.
Como eje de simetría consideramos una recta paralela al eje de ordenadas que pasa por la media de la distribución. Si una distribución es simétrica, existe el mismo número de valores a la derecha que a la izquierda de la media, por tanto, el mismo número de desviaciones con signo positivo que con signo negativo. Decimos que hay asimetría positiva (o a la derecha) si la "cola" a la derecha de la media es más larga que la de la izquierda, es decir, si hay valores más separados de la media a la derecha. Diremos que hay asimetría negativa (o a la izquierda) si la "cola" a la izquierda de la media es más larga que la de la derecha, es decir, si hay valores más separados de la media a la izquierda.
 

 

Ficha 17: Libertad Asintótica
Consecuencia de ciertas teorías gauge, en particular la cromodinámica cuántica, de que las fuerzas entre partículas como los quarks se hacen más débiles a distancias más cortas (es decir, a altas energías) y se anulan a medida que la distancia entre las partículas tiende a cero. Sólo las teorías gauge no abelianas con simetrías gauge no rotas pueden tener libertad asintótica. Por el contrario, la electrodinámica cuántica predice que la interacción entre partículas disminuye como resultado del apantallamiento dieléctrico; la libertad asintótica para los quarks implica que ocurre un antiapantallamiento. Físicamente, la libertad asintótica postula que el estado de vacío para los gluones es un medio que tiene paramagnetismo de color; es decir, el vacío antiapantalla las cargas de color.
Así que, en cromodinámica cuántica, los quarks están continuados con los gluones, en forma tal que, si están cerca los unos de los otros, la fuerza nuclear fuerte disminuye (libertad asintótica), pero si tratan de separarse, la fuerza nuclear fuerte aumenta (confinamiento de los quarks), ya que, los gluones, esa especie de pegamento que los retiene, actúa como un muelle de acero. Si lo estiramos (separación de los quarks) se produce más resistencia, si lo dejamos en su estado natural, no hay resistencia, así funciona la fuerza nuclear fuerte, es la única fuerza de la naturaleza que crece con la distancia.
Los quarks están confinados en una región con radio R de valor R≈hc/Λ≈10-13 cm.
Bianca Atwell con John Hagelin. La mente colectiva y el campo unificado
 
http://www.biancaatwell.com  John Hagelin es uno de los físicos cuánticos más comprometidos por la paz mundial. Trabaja en todo el mundo creando grupos de miles de meditadores entrenados para crear ondas de paz en el planeta, con un sistema que está dando que hablar en los entornos académicos y científicos. Utilizar la meditación trascendental en forma masiva para acabar con las guerras y la violencia en la Tierra.

Bianca Atwell le entrevista en la ciudad de Mexicali, en el entorno del VI Congreso Internacional de la Ciencia del Nuevo Paradigma en la Educación.

 

Ficha 18: Asteroide
(Planetas menores; planetoides).
Pequeños cuerpos que giran alrededor del Sol entre las órbitas de Marte y Júpiter en una zona alejada entre 1'7 y 4'0 unidades astronómicas del Sol (cinturón de asteroides). El tamaño de estos objetos varía desde el más grande, Ceres (con un diámetro de 933 km), a los objetos con menos de 1 km de diámetro. Se estima que hay alrededor de 10 cuerpos con diámetro mayor de 250 km y unos 120 cuerpos con diámetros por encima de 130 km.
Aunque son millones, su masa total es apenas una pequeña fracción de la Tierra, aunque no por ello dejan de ser preocupantes en el sentido del peligro que pueda suponer para nuestro planeta la colisión con uno de estos pedruscos enormes del espacio estelar. La desaparición de los dinosaurios podría ser una prueba de los efectos devastadores de una colisión de este calibre.

 

Ficha 19: Astrofísica
Ciencia que estudia la física y la química de objetos extraterrestres. La alianza de la física y la astronomía, que comenzó con la creación de la espectroscopia, permitió investigar lo que son los objetos celestes, y no solo donde están.
Esta ciencia nos permite saber la composición de elementos que tiene un objeto estelar situado a miles de años-luz de la tierra y, de momento, se confirma que el material existente en el universo entero es igual en todas partes.
 
El universo primitivo era un plasma, cuando se enfrió se convirtió en hidrógeno y algo de helio (los dos elementos más simples) y más tarde, cuando se formaron las primeras estrellas y galaxias, se pudo fabricar en los hornos termonucleares de las estrellas, el resto de elementos más complejos y pesados, tales como litio, carbono, oxígeno, nitrógeno, todos los gases nobles como argón, kriptón, neón, etc., el hierro, mercurio... uranio y se completó la tabla periódica de elementos naturales que están, de una u otra forma dispersos por el universo.
Nosotros mismos, la especie humana, estamos hechos de un material que sólo se puede producir en las estrellas, así que, sin lugar a ninguna duda, el material que nos formó se fabricó hace miles de millones de años en estrellas situadas a miles o cientos de miles de años-luz de nuestro Sistema Solar. ¡Qué insignificante somos comparados con la enormidad del universo!

 

Ficha 20: Astronomía invisible
Estudio de objetos celestes observados mediante la detección de su radiación o longitudes de onda diferentes de las de la luz visible.
 
 Mediante este método se ha detectado, por ejemplo, una fuente emisora de rayos X, Cygnus X-I, que consiste en una estrella supergigante que rota alrededor de un pequeño compañero invisible con una masa unas diez veces mayor que la del Sol y, por tanto, por encima del límite de Chandrasekhar y que todos los expertos le conceden su voto para que, en realidad sea un agujero negro situado en el corazón de nuestra Galaxia a 30.000 años-luz de la Tierra.

 

Ficha 21: Unidad Astronómica
Distancia media de la Tierra al Sol, igual a 149.600 millones de Km, ó 499'012 segundos-luz, ó 8'316 minutos-luz. Cuando se utiliza para medir distancias entre galaxias, se redondea en 150 millones de Km.
  

 

Ficha 22: Átomo
La parte más pequeña que puede existir de un elemento. Los átomos constan de un pequeño núcleo muy denso de protones y neutrones rodeado de electrones situados por capas o niveles y moviéndose. El número de electrones es igual al de protones y, siendo la carga de estas positivas y la carga de aquellas negativa pero equivalentes, el resultado final del total de la carga es cero y procura la estabilidad entre cargas opuestas pero iguales.
 
La estructura electrónica de un átomo se refiere a la forma en la que los electrones están dispuestos alrededor del núcleo y, en particular, a los niveles de energía que ocupan. Cada electrón puede ser caracterizado por un conjunto de cuatro números cuánticos: el número cuántico principal, el orbital, el magnético y el número cuántico de espín.
De acuerdo con el principio de exclusión de Pauli, dos electrones en un átomo no pueden tener el mismo conjunto de números cuánticos. Los números cuánticos definen el estado cuántico del electrón y explican como son las estructuras electrónicas de los átomos.
En el núcleo reside casi por completo la masa del átomo que está compuesta, como se ha dicho, por protones y neutrones que, a su vez, están hechos por quarks.
Se puede dar el caso de que, en ocasiones, se encuentren átomos exóticos en el que un electrón ha sido reemplazado por otra partícula cargada negativamente, como un muón o mesón. En este caso, la partícula negativamente cargada finalmente colisiona con el núcleo con la emisión de fotones de rayos X. Igualmente, puede suceder que sea el núcleo de un átomo el que sea reemplazado por un mesón positivamente cargado. Ese átomo exótico tiene que ser creado artificialmente y es inestable.

 

Ficha 23:Azar
Característica un régimen en el que no se puede hacer predicciones exactas, sino sólo en términos de probabilidades. En la física clásica se pensaba que el azar sólo regía donde la ignorancia limitaba nuestra comprensión de un mecanismo subyacente de causación estricta. Pero en la interpretación de Copenhague de la mecánica cuántica, se describe el azar como inherente a todas las observaciones de la naturaleza.
 

No hay comentarios.:

Publicar un comentario